0=-16t^2+0+1450

Simple and best practice solution for 0=-16t^2+0+1450 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+0+1450 equation:



0=-16t^2+0+1450
We move all terms to the left:
0-(-16t^2+0+1450)=0
We add all the numbers together, and all the variables
-(-16t^2+0+1450)=0
We get rid of parentheses
16t^2-0-1450=0
We add all the numbers together, and all the variables
16t^2-1450=0
a = 16; b = 0; c = -1450;
Δ = b2-4ac
Δ = 02-4·16·(-1450)
Δ = 92800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92800}=\sqrt{1600*58}=\sqrt{1600}*\sqrt{58}=40\sqrt{58}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{58}}{2*16}=\frac{0-40\sqrt{58}}{32} =-\frac{40\sqrt{58}}{32} =-\frac{5\sqrt{58}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{58}}{2*16}=\frac{0+40\sqrt{58}}{32} =\frac{40\sqrt{58}}{32} =\frac{5\sqrt{58}}{4} $

See similar equations:

| 33=j/5 | | 6t+3=7t+10 | | 8s+6=3s+1 | | 0=(-1/2)(32/1)t^2+0+1450 | | 7r=-(7/2) | | 5v-6=10v+5 | | -x2+x4-7=0 | | 8h-2=3h+2 | | 0=-1/2(32/1)t^2+0+1450 | | 9v+7=10v-4 | | 6x-30=3(x-6) | | |3n-4|=|1-n| | | 2-3x=-11 | | x​2+16x+64=0 | | 3n−5=4n+34n+3 | | x​^2​​+16x+64=0 | | 2x-1/3-2x-3/6=x/2 | | 11x^2-8x=11 | | 2f+4=-7f+3 | | 5t+1=-t-1 | | 2s-5=6s-6 | | -8/3•y=16/3 | | -4(w+2)-w-5=-5(w+5)+12 | | 3x+54=7 | | 8.6+5.1n=n+17.7 | | (x+7)(x-5)=(2x+1)(x-5) | | 2x+6(x-5)=2(x-6)-6 | | u+1.87=8.17 | | t-1/3=t+1/2 | | t/3=t+1/2+1/3 | | -7x-2+6x=6 | | 2p-2(6-3p)=3(p-4)-40 |

Equations solver categories